Backstepping Control of a Class of Nonlinear Systems Preceded by Hysteresis with Prandtl-ishlinskii Presentations
نویسندگان
چکیده
Control of nonlinear systems preceded by unknown hysteresis nonlinearities is a challenging task. In the literature, many mathematical models have been proposed to describe the hysteresis. The challenge addressed here is how to fuse those hysteresis models with available robust control techniques to have the basic requirement of stability of the system. The purpose of the paper is to show such a possibility by using the Prandtl-Ishlinskii (PI) hysteresis model. A backstepping based robust control approach, serving as an illustration, is fused with the PI model without necessarily constructing a hysteresis inverse. The global stability of the system and tracking a desired trajectory to a certain precision are achieved. Simulations performed on a nonlinear system illustrate and further validate the effectiveness of the proposed approach.Copyright c ©2005 IFAC
منابع مشابه
Motion Control of Smart Material Based Actuators : Modeling , Controller De - sign and Experimental Evaluation
Motion Control of Smart Material Based Actuators: Modeling, Controller Design and Experimental Evaluation Sining Liu, Ph.D. Concordia University, 2013 Smart material based actuators, such as piezoelectric, magnetostrictive, and shape memory alloy actuators, are known to exhibit hysteresis e ects. When the smart actuators are preceded with plants, such non-smooth nonlinearities usually lead to p...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملRobust Adaptive Nonlinear Control Law for a General Class of Nonlinear Systems with Operator-Based Hysteresis Models
For the nonlinear systems preceded by smart actuators which exhibit hysteresis nonlinearities, it is a challenge to mitigate effects of the hysteresis. By utilizing an operator-based Prandtl-Ishlinskii model and a neural network approximator, a robust adaptive control scheme is developed for a general class of continuous-time nonlinear dynamic systems with unknown hysteresis nonlinearities. The...
متن کاملHysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation
In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...
متن کاملModel-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be...
متن کامل